Abstract
Electrified vehicles are increasingly being seen as a means of mitigating the pressing concerns of traffic-related pollution. Due to the nature of engine-assisted vehicle exhaust systems, pedestrians in close proximity to these vehicles may experience events where specific emission concentrations are high enough to cause health effects. To minimize pedestrians’ exposure to vehicle emissions and pollutants nearby, we present a pedestrian-aware supervisory control system for connected hybrid electric vehicles by proposing an interactive optimization methodology. This optimization methodology combines a novel fuzzy adaptive cost map and the bees algorithm to optimize power-split control parameters. It enables the self-regulation of interobjective weights of fuel and exhaust emissions based on the real-time pedestrian density information during the optimization process. The evaluation of the vehicle performance by using the proposed methodology is conducted on the realistic trip map involving pedestrian density information collected from the University College Dublin campus. Moreover, two bootstrap sampling techniques and effect of communication quality are both investigated in order to examine the robustness of the improved vehicle system. The results demonstrate that 14.42% mass of exhaust emissions can be reduced for the involved pedestrians, by using the developed fuzzy adaptive cost map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Transportation Electrification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.