Abstract

In preparation for the upcoming MAST-U campaign, pedestal stability of spherical tokamaks is revisited by investigating standard H-mode discharges on MAST. As a step beyond previous studies, both ion and electron profiles are used for obtaining equilibria and a diverse set of pedestals is evaluated. Stability analysis with the ELITE and CGYRO codes shows that MAST pedestals are constrained by kinetic ballooning modes and medium toroidal mode number peeling-ballooning modes, with most unstable modes ranging from n = 25 to n = 45. In discharges with a steep q profile at the edge a larger number of poloidal harmonics is excited for each toroidal mode. A comparison with discharges on DIII-D with matched shape and similar non-dimensional parameters indicates that the increased shear at lower aspect ratio stabilizes low n peeling modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call