Abstract

The performance of Agent-based Traffic Simulations (ABTS) has been shown to benefit tremendously from offloading to accelerators such as GPUs. In the search for the most suitable hardware platform, reconfigurable hardware is a natural choice. Some recent work considered ABTS on Field-Programmable Gate Arrays (FPGAs), yet only implemented simplified cellular automaton-based models. The recent introduction of support for high-level synthesis from C, C++, and OpenCL in FPGA tool chains allows FPGA designs to be expressed in a form familiar to software developers. However, the performance achievable with this approach in a simulation context is not well-understood. In this work, to the best of our knowledge, we present the first FPGA-accelerated ABTS based on widely-accepted microscopic traffic simulation models, and the first to be generated from high-level code. The achieved speedup of up to 24.3 over a sequential CPU-based execution indicates that recent FPGA toolchains allow simulationists to unlock the performance benefits of reconfigurable hardware without the need to express the simulation models in low-level hardware description languages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.