Abstract

The paper deals with a peculiar rheological behavior of the Al-Mg-Sc-Zr alloy at deformation temperatures of 330 and 360 °C and a strain rate of 0.05 s−1. It has been found that the strain resistance curve for this material consists of several portions. First there is material hardening, then softening, and again hardening. The application of the electron backscatter diffraction technique and transmission electron microscopy has elucidated that in-situ recrystallization is the main process of softening at the temperatures studied. The appearance of the second portion of hardening on the strain resistance curve results from inhibited in-situ recrystallization. At the deformation temperature of 330 °C, as distinct from the temperature of 360 °C, a small number of grains are formed on the boundaries of original grains because of insufficiently active dynamic polygonization. The presence of abounding intermetallics in the microstructure causes the development of the barrier effect of blocking free dislocations, grain and subgrain boundaries by intermetallics, thus enhancing material hardening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.