Abstract

This paper is devoted to the sintering process of Al2O3–SiO2–ZrO2 ceramics. The studied method was electroconsolidation with directly applied electric current. This method provides substantial improvements to the mechanical properties of the sintered samples compared to the traditional sintering in the air. The research covered elemental and phase analysis of the samples, which revealed phase transition of high-alumina solid solutions into mullite and corundum. Zirconia was represented mainly by tetragonal phase, but monoclinic phase was present, too. Electroconsolidation enabled samples to reach a density of 3.0 g/cm3 at 1300 °C, while the sample prepared by traditional sintering method obtained it only at 1700 °C. For the composite Al2O3—20 wt.% SiO2—10 wt.% ZrO2 fabricated by electroconsolidation, it was demonstrated that fracture toughness was higher by 20–30%, and hardness was higher by 15–20% compared to that of samples sintered traditionally. Similarly, the samples fabricated by electroconsolidation exhibited elastic modulus E higher by 15–20%. The hypothesis was proposed that the difference in mechanical and physical properties could be attributed to the peculiarities of phase formation processes during electroconsolidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.