Abstract

The behavior of oscillations in the quite solar chromosphere under a coronal hole at several heights has been investigated. The properties of oscillations in cell, network, and weak-floccule areas have been analyzed. A time series of spectrograms in three ionized calcium lines, the Ca II K and H resonance doublet lines and the infrared Ca II 849.8-nm triplet line, was used. The observations were carried out at the horizontal solar telescope of the Sayan Observatory. The goal of this study was to compare the distributions of spectral power in various frequency ranges and their variations for selected spatial areas at different heights of the chromosphere. Particular attention was paid to the weak floccule due to a noticeable difference in the central intensity distribution between the K and H lines and the 849.8-nm line. A spectral Fourier analysis was used. The central intensities of the observed spectral lines, the K-index, and the equivalent width (the latter for the 849.8-nm line) were chosen as oscillation parameters. The studies have shown that the main intensity oscillation power at both atmospheric levels is concentrated at frequencies below 9 mHz. In the distribution of intensity oscillation power at different chromospheric levels, there are differences clearly distinguishable in the floccule. Powerful five-minute oscillations whose main peak frequency decreases with height, while the amplitude increases have been detected in the central part of the floccule. This result confirms the assumptions recently pointed out in the literature that vertical magnetic field concentrations can serve as a channel for the passage of low-frequency oscillations from the photosphere to the chromosphere in faculae. The intensity oscillation power in the frequency ranges under consideration has turned out to decrease with height, on average, for the entire observed spatial area. This may be related to the loss of part of the wave energy through the reflection, dissipation, and transformation of wave modes in the magnetic canopy layer. An area with a low brightness but powerful oscillations at about 3.3 mHz covering a considerable range of heights probably pertaining to “magnetic flashers” has been isolated in the telescope’s field of view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.