Abstract

In the present work, the effect of a low-dose rate of high-LET radiation in polychromatic erythrocytes of mice bone marrow was investigated in vivo. The spectral and component composition of the radiation field used was similar to that present in the atmosphere at an altitude of about 10 km. The dose dependence, adaptive response, and genetic instability in the F1 generation born from males irradiated under these conditions were examined using the micronucleus test. Irradiation of the mice was performed for 24 h per day in the radiation field behind the concrete shield of the Serpukhov accelerator. Protons of 70 GeV were used over a period of 15-31 days, to accumulate doses of 11.5-31.5 cGy. The experiment demonstrated that irradiation of mice in vivo in this dose range leads to an increase in cytogenetic damage to bone marrow cells, but does not induce any adaptive response. In mice pre-irradiated with a dose of 11.5 cGy, an increase in sensitivity was observed after an additional irradiation with a dose of 1.5 Gy. The absence of an adaptive response suggests existence of genetic instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.