Abstract

Theory is developed for kinetics of the diffusion-controlled radiation defect accumulation in crystalline solids under high fluencies taking into account recently observed correlation between the defect diffusion energy and pre-exponential (known as the Meyer-Neldel rule in chemical kinetics) and their dependence on the radiation fluence (Kotomin et al., J Phys Chem A 122 (2018) 28). The predicted accumulation kinetics could be applied to all kinds of solids. It considerably differs from the commonly used, in particular, suggesting that concentration growth at high fluencies could be nonmonotonous and the saturation defect concentrations independent on the temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.