Abstract

The influence of a chemical composition on the phase composition, stability, and crystal structure type of the austenitic and martensitic ternary NiMn–NiTi alloys with a quasi-binary cross-section is analyzed. The temperature-concentration limits of their existence are determined. It is found out that doping of these alloys with titanium decreases the critical temperatures of thermoelastic martensitic transformations compared to those of the basic binary intermetallic compound NiMn. In the alloys, doped with more than 15 at.% titanium, phase decomposition is observed, followed by the formation of titanium-rich (Ni3Ti) ternary precipitates of the 4H-HCP type, which form a Widmanstatten substructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.