Abstract

Ferromagnetic oxide coatings were formed on aluminum alloy by the plasma-electrolytic oxidation technique in an electrolyte with colloidal particles of iron and cobalt hydroxides. Iron and cobalt are concentrated in the coating pores as a part of nanosized crystallites. The size of individual crystallites in the pores was ∼50–100 nm. The deficit of oxygen to form oxides in crystallites shows that the metals in the crystallites are predominantly in a reduced state. It is also possible that the metal or oxide nuclei are surrounded by oxide-hydroxide shells. The coatings obtained within 5 min have a high coercive force H c = 1300 Oe. A theoretical analysis of the magnetic properties of Fe-, Co-containing coatings has been performed using the model of clusters consisting of magnetostatically interacting particles. The theoretical value of the saturation magnetization and the experimental values of the coercive force can be explained with the presence of two phases in the nanoparticles: a large antiferromagnetic or ferromagnetic (hydroxides and/or oxides of iron and cobalt) and a small superparamagnetic (iron, cobalt, magnetite, maghemite).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.