Abstract

Evaporation of a thin layer of a polar liquid (water) having a free surface and located on a solid substrate is investigated. A solvable surfactant is placed on the free liquid-vapor interface. The surface tension is a linear function of the surface concentration of the surfactant. The surface energy of the solid-liquid contact line is a nonmonotonic function of the layer thickness and is the sum of the Van der Waals interaction and the specific interaction of the double electric layer on the interface. The effect of the solvable surfactant on the dynamics and stability of the propagation of the evaporation front in the thin liquid film is analyzed in the long-wave approximation in the system of Navier-Stokes equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.