Abstract

The results of the study aimed at further improvement and development of procedures for evaluating methods of determining the fire resistance characteristics of building structures are presented. The features of estimation of methods of determination of characteristics of fire resistance of building structures are determined. It is established that for the validation of experimental-calculation methods intended to determine the thickness of fire protection of building structures, which ensures their fire resistance in a wide range of parameters of these structures, it is impossible to use samples of structures with certain properties due to their inability to create. A procedure for such validation using a computational experiment method is proposed. In this procedure, accurate (conditional) temperature data for steel column specimens are determined by solving a direct one-dimensional non-stationary thermal conductivity problem. The validity of the proposed validation procedure by its application for the experimental calculation method, designed to determine the thickness of fire protection materials for load-bearing steel structures (columns and beams), has been established. It is established that the overwhelming number of calculated values of the thickness of the fire protection materials, determined by this method, exceeds its true values, which indicates the acceptability of the obtained results in terms of providing fire resistance of load-bearing steel structures. It is established that the difference between the calculated and actual values of the thickness of the fire protection materials can reach a considerable value (twice or more).The direction of further researches which are focused on revealing of influence of thermophysical properties of fire protection materials and stress-deformed state of samples of steel structures during the test on the accuracy of the method. This will identify more appropriate procedures for evaluating the method and processing the experimental data with increased accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call