Abstract

This work experimentally addresses aluminum combustion in steam, pure or mixed with diluents, for aluminum particles in size range 40∼80 µm, using an electrodynamic levitator. High-speed videos unveil an unreported and complex mechanism in steam, not observed in other oxidizers. The detached flame is quite faint and very close to the surface. Alumina smoke around the droplet rapidly condenses and coalesces into a large, single orbiting alumina satellite. It eventually collides the main aluminum droplet while generating secondary alumina droplets. A unique feature is the presence of several distinct oxide lobes on the droplet, which merge only at the end of burning and encapsulate the remaining aluminum, possibly promoting an incomplete combustion. The measured burning times in pure water vapor are longer than expected and the efficiency of steam is found to be 30% that of oxygen, lower than the usually accepted value of 60%. A general correlation on burning time, including the major oxidizers, is proposed. Direct numerical simulations are conducted and are in line with experiments, in terms of burning rate or flame stand off ratio. Combustion in steam seems mostly supported by surface reactions, giving a faint flame with low gas temperatures and high hydrogen content. It is speculated that those two specific features could help explain the peculiarity of steam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.