Abstract

We study the electronic states of graphite ribbons with edges of two typical shapes, armchair and zigzag, by performing tight binding band calculations, and find that the graphite ribbons show striking contrast in the electronic states depending on the edge shape. In particular, a zigzag ribbon shows a remarkably sharp peak of density of states at the Fermi level, which does not originate from infinite graphite. We find that the singular electronic states arise from the partly flat bands at the Fermi level, whose wave functions are mainly localized on the zigzag edge. We reveal the puzzle for the emergence of the peculiar edge state by deriving the analytic form in the case of semi-infinite graphite with a zigzag edge. Applying the Hubbard model within the mean-field approximation, we discuss the possible magnetic structure in nanometer-scale micrographite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call