Abstract

Some of the peculiar features of the periodic velocity-field structure for OB associations can be explained using the Roberts-Hausman model, in which the behavior of a system of dense clouds is considered in a perturbed potential. The absence of statistically significant variations in the azimuthal velocity across the Carina arm probably results from its sharp increase behind the shock front, which is easily blurred by distance errors. The existence of a shock wave in the spiral arms and, at the same time, the virtually free motion of OB associations in epicycles can be reconciled in the model of particle clouds with a mean free path of 0.2–2 kpc. The velocity field of OB associations exhibits two appreciable nonrandom deviations from an ideal spiral pattern: a 0.5-kpc displacement of the Cygnus-and Carina-arm fragments from one another and a weakening of the Perseus arm in quadrant III. However, the identified fragments of the Carina, Cygnus, and Perseus arms do not belong to any of the known types of spurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.