Abstract

AbstractGraphene nanoribbons are quasi‐one‐dimensional meterials with finite width. Characterizing a wide class of nanoribbons by edge shape and width, we make a systematic analysis of their electronic properties. The band gap structure of nanoribbons is shown to exhibit a valley structure with stream‐like sequences of metallic or almost metallic nanoribbons. Among them, all zigzag nanoribbons are metallic, and armchair nanoribbons are metallic by period of 3. We find that these stream‐like sequences correspond to equi‐width curves, and that the band gap of chiral and armchair nanoribbons oscillate as a function of the width. Furthermore a possible application of nanoribbons to nanoelectronics is discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.