Abstract

Gas-phase clusters are deemed to be σ-aromatic when they satisfy the 4n+2 rule of aromaticity for delocalized σ electrons and fulfill other requirements known for aromatic systems. While the range of n values was shown to be quite broad when applied to short-lived clusters found in molecular-beam experiments, stability of all-metal cluster-like fragments isolated in condensed phase was previously shown to be mainly ascribed to two electrons (n=0). In this work, the applicability of this concept is extended towards solid-state compounds by demonstrating a unique example of a storable compound, which was isolated as a stable [K([2.2.2]crypt)]+ salt, featuring a [Au2 Sb16 ]4- cluster core possessing two all-metal aromatic AuSb4 fragments with six delocalized σ electrons each (n=1). This discovery pushes the boundaries of the original idea of Kekulé and firmly establishes the usefulness of the σ-aromaticity concept as a general idea for both small clusters and solid-state compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call