Abstract

ABSTRACT Force recordings of the pectoralis muscle of European starlings have been made in vivo during level flight in a wind tunnel, based on bone strain recordings at the muscle’s attachment site on the humerus (deltopectoral crest). This represents the first direct measurement of muscle force during activity in a live animal based on calibrated bone strain recordings. Our force measurements confirm earlier electromyographic data and show that the pectoralis begins to develop force during the final one-third of the upstroke, reaches a maximal level halfway through the downstroke, and sustains force throughout the downstroke. Peak forces generated by the pectoralis during level flight at a speed estimated to be 13.7ms−1 averaged 6.4N (28% of maximal isometric force), generating a mean mass-specific muscle power output of 104 W kg−1. Combining our data for the power output of the pectoralis muscle with data for the metabolic power of starlings flying at a similar speed yields an overall flight efficiency of 13 %. The force recordings and length changes of the muscle, based on angular displacements of the humerus, indicate that the pectoralis muscle undergoes a lengthening-shortening contraction sequence during its activation and that, in addition to lift and thrust generation, overcoming wing inertia is probably an important function of this muscle in flapping flight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.