Abstract

Compared to anurans from other families, landings of toads (Bufonidae) during saltation appear well coordinated and the initial landing impact is absorbed exclusively by the forelimbs. Although the forelimbs and particularly the pectoral girdle have been suggested to be important for shock absorption, the functional roles of its various elements have not been evaluated in detail. This study addresses open questions regarding the kinematics of the forelimbs during landing in Rhinella marina using X-ray reconstruction of moving morphology and scientific rotoscoping. The kinematic analysis clearly showed that in addition to motions in the shoulder and elbow joints, substantial movements of the pectoral girdle in toto as well as of its elements relative to each other do occur during landing. The pectoral girdle showed first and foremost rotations about its latero-lateral axis as well as dorso-ventral translations relative to the spine. Our results quantify the extent of flexion and extension in the suprascapula-scapular synchondrosis during landing. Forelimb kinematics in R. marina differed from that of other anurans in starting elbow extension relatively early during the landing process, which likely prevents the chest from contacting the ground. Furthermore, the animal regains an upright and ready-to-hop-again position quickly and the recovery phase is short compared to other anurans. Humeral kinematics and anatomy confirm that the glenohumeral interlocking mechanism guides the humerus during the initial landing phase. Cranio-ventral ridges on the humeral head and the paraglenoid cartilage interlock in anteverted and slightly retroverted humeral positions. This occurs at the beginning of the landing. When interlocked, adduction/abduction as well as long-axis rotation of the humerus are restricted. During the course of landing, the humerus retroverts and is gradually freed from interlocking restrictions due to a smoother relief at the caudal aspect of the humeral head.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.