Abstract

Scaffolds made of chitosan nanofibers are often too mechanically weak for their application and often their manufacturing processes involve the use of harmful and flammable organic solvents. In the attempt to improve the mechanical properties of nanofibrous scaffolds made of chitosan without the use of harmful chemicals, pectin, an anionic polymer was blended with chitosan, a cationic polymer, to form a polyelectrolyte complex and electrospun into nanofibers for the first time. The electrospun chitosan-pectin scaffolds, when compared to electrospun chitosan scaffolds, had a 58% larger diameter, a 21% higher Young’s modulus, a 162% larger strain at break, and a 104% higher ultimate tensile strength. Compared to the chitosan scaffolds, the chitosan-pectin scaffolds’ swelling ratios decreased by 55% after 60 min in a saline solution and more quickly released the preloaded tetracycline HCl. The L929 fibroblast cells proliferated slightly slower on the chitosan-pectin scaffolds than on the chitosan scaffolds. Nonetheless, cells on both materials deposited similar levels of extracellular type I collagen on a per DNA basis. In conclusion, a novel chitosan-pectin nanofibrous scaffold with superior mechanical properties than a chitosan nanofibrous scaffold was successfully made without the use of harmful solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.