Abstract

The LIGO observatories can potentially detect stochastic gravitational waves arising from phase transitions which happened in the early universe at temperatures around T ∼ 108 GeV. This provides an extraordinary opportunity for discovering the phase transition associated with the breaking of the Peccei-Quinn symmetry, required in QCD axion models. Here we consider the simplest Peccei-Quinn models and study under which conditions a strong first-order phase transition can occur, analyzing its associated gravitational wave signal. To be detectable at LIGO, we show that some supercooling is needed, which can arise either in Coleman-Weinberg-type symmetry breaking or in strongly-coupled models. We also investigate phase transitions that interestingly proceed by first breaking the electroweak symmetry at large scales before tunneling to the Peccei-Quinn breaking vacuum. In this case, the associated gravitational wave signal is more likely to be probed at the proposed Einstein Telescope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.