Abstract

Peat respiration that releases carbon dioxide (CO2) to the atmosphere contributes to regional and global change. Aeration associated with soil water content levels controls emission rates, but soil amendments might mitigate respiration. The objectives of this study were to examine the effects of various water content levels and laterite application on microbial (heterotrophic) respiration in peat soil. Bulk samples of surface (0–20 cm depth) and subsurface (30–50 cm depth) layers were collected from an oil palm plantation in Riau Province, Indonesia. Peat water content was adjusted to 20, 40, 60, 80, and 100 % water filled pore space (WFPS). Laterite soil (clay containing high Al and Fe oxides) was applied to 3, 6, and 12 mg g−1 dry weight (1.2, 2.4, and 4.8 Mg ha−1) peat samples at 60 % and 100 % WFPS. Results showed peat respiration was notably affected by water content, but less affected by laterite application. Peat respiration increased sharply from wet (≥80 % WFPS) to moist soil (60 to 40 % WFPS), and decreased when soil dried (≤40 % WFPS). Laterite as a peat ameliorant accelerated rather than reduced peat respiration, and is therefore not a viable choice for CO2 emissions reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.