Abstract

Pearson's chi-squared test is widely used to test the goodness of fit between categorical data and a given discrete distribution function. When the number of sets of the categorical data, say k, is a fixed integer, Pearson's chi-squared test statistic converges in distribution to a chi-squared distribution with k−1 degrees of freedom when the sample size n goes to infinity. In real applications, the number k often changes with n and may be even much larger than n. By using the martingale techniques, we prove that Pearson's chi-squared test statistic converges to the normal under quite general conditions. We also propose a new test statistic which is more powerful than chi-squared test statistic based on our simulation study. A real application to lottery data is provided to illustrate our methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.