Abstract
We present theoretical arguments and experimental evidence for a longitudinal instability in core-shell cylindrical polymer brushes with a solvophobic inner (core) block and a solvophilic outer (shell) block in selective solvents. The two-gradient self-consistent field Scheutjens-Fleer (SCF-SF) approach and Monte Carlo (MC) simulations are employed to study a conformational transition which occurs upon a decrease in the solvent strength for the inner block from theta- to poor solvent conditions. It is found that a decrease in the solvent strength for the core block leads to an instability in the cylindrically uniform structure and the appearance of longitudinal undulations in the collapsed core of the molecular brush. This result of our modeling is in excellent agreement with experimental observations on core-shell brushes poly(acrylic acid) (PAA) core and poly(n-butyl acrylate) shell, where the core forms pearl-necklace-like structures in either a bad solvent for PAA or due to complexation with multivalent ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.