Abstract

The C4 grass pearl millet is one of the most drought tolerant cereals and is primarily grown in marginal areas where annual rainfall is low and intermittent. It was domesticated in sub-Saharan Africa, and several studies have found that it uses a combination of morphological and physiological traits to successfully resist drought. This review explores the short term and long-term responses of pearl millet that enables it to either tolerate, avoid, escape, or recover from drought stress. The response to short term drought reveals fine tuning of osmotic adjustment, stomatal conductance, and ROS scavenging ability, along with ABA and ethylene transduction. Equally important are longer term developmental plasticity in tillering, root development, leaf adaptations and flowering time that can both help avoid the worst water stress and recover some of the yield losses via asynchronous tiller production. We examine genes related to drought resistance that were identified through individual transcriptomic studies and through our combined analysis of previous studies. From the combined analysis, we found 94 genes that were differentially expressed in both vegetative and reproductive stages under drought stress. Among them is a tight cluster of genes that are directly related to biotic and abiotic stress, as well as carbon metabolism, and hormonal pathways. We suggest that knowledge of gene expression patterns in tiller buds, inflorescences and rooting tips will be important for understanding the growth responses of pearl millet and the trade-offs at play in the response of this crop to drought. Much remains to be learnt about how pearl millet's unique combination of genetic and physiological mechanisms allow it to achieve such high drought tolerance, and the answers to be found may well be useful for crops other than just pearl millet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.