Abstract

Signaling in host plants is an integral part of a successful infection by pathogenic RNA viruses. Therefore, identifying early signaling events in host plants that play an important role in establishing the infection process will help our understanding of the disease process. In this context, phosphorylation constitutes one of the most important post-translational protein modifications, regulating many cellular signaling processes. In this study, we aimed to identify the processes affected by infection with Peanut stunt virus (PSV) and its satellite RNA (satRNA) in Nicotiana benthamiana at the early stage of pathogenesis. To achieve this, we performed proteome and phosphoproteome analyses on plants treated with PSV and its satRNA. The analysis of the number of differentially phosphorylated proteins showed strong down-regulation in phosphorylation in virus-treated plants (without satRNA). Moreover, proteome analysis revealed more down-regulated proteins in PSV and satRNA-treated plants, which indicated a complex dependence between proteins and their modifications. Apart from changes in photosynthesis and carbon metabolism, which are usually observed in virus-infected plants, alterations in proteins involved in RNA synthesis, transport, and turnover were observed. As a whole, this is the first community (phospho)proteome resource upon infection of N. benthamiana with a cucumovirus and its satRNA and this resource constitutes a valuable data set for future studies.

Highlights

  • Viruses are among the most important causal agents of infectious diseases in animals and plants

  • Our previous studies on Peanut stunt virus (PSV)-G strain- and PSV-G and satellite RNA (satRNA)-infected N. benthamiana transcriptomes showed that in the PSV-G-infected plants, more of the differentially expressed genes (DEGs) associated with phosphorylation were found to be down-regulated compared with PSV-G and satRNA-infected plants, where the number of up-regulated DEGs associated with this category was considerably higher [34]

  • This result indicates that phosphorylation may be one of the most significant process connected to satRNA influence on plant defense mechanisms against PSV infection

Read more

Summary

Introduction

Viruses are among the most important causal agents of infectious diseases in animals and plants. Plant viruses are composed of a protein coat and a nucleic acid core [1]. Their life cycle is strictly associated with a host cell environment and uses the host’s biochemical machinery. Viruses need hosts in order to multiply and spread, and they are considered as parasites [1]. By invading susceptible plant host cells, lead to a pathogenesis process, which results in the disturbance of the host physiology, causing disease symptoms. The interactions between viral and plant factors lead to engagement of many host proteins in defense responses against infectious agents [2,3,4]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call