Abstract
A high-performance and affordable peanut shell-derived biochar was employed for the efficient removal of Rhodamine B (RhB) from aqueous solutions. The properties of peanut shell biochar (PSB) were investigated through Fourier transform infrared (FTIR) spectroscopy and Brunauer–Emmett–Teller surface area measurements. The FTIR analysis revealed numerous active sites and functional groups for the binding of dye molecules, while the BET surface area was determined to be 351.11 m2g-1. Four different isotherms and kinetic models were applied to determine the equilibrium adsorption of RhB, and the results indicated that the Freundlich isotherm was the most appropriate model. A maximum dye removal rate of 94.0% occurred at a pH of 3 with an adsorbent dose of 0.325 g L−1. The prepared adsorbent showed excellent sorbent behaviour and can be reused multiple times after regeneration, with the surface area decreasing from 351.11 m2g-1 to 140.13 m2g-1 after the third cycle. The negative Gibbs free energy ΔGo at all applied temperatures suggested that spontaneous adsorption occurred and RhB adsorption on the PSB was found exothermic, as evidenced by the negative value of ΔHo. The regenerated PSB can be utilized as an efficient, environmentally friendly, and cost-effective sorbent for the removal of dyes at temperatures lower than ambient temperature, providing both technical and financial advantages for sustainable environmental management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.