Abstract

Peanut (Arachis hypogaea L.) in the USA is generally seeded after several primary tillage operations that may include disking, chisel plowing, moldboard plowing, and bedding (conventional tillage systems). Concerns over erosion and production costs have increased interest in reduced tillage systems. Production in reduced tillage systems minimizes ability to incorporate fertilizers below the pegging zone, and residue on soil surface could impact movement of calcium sulfate (CaSO4) into the soil, reducing Ca availability to pegs. Research was conducted from 1997 through 1999 to compare peanut yield and gross economic value of virginia market type peanut planted in conventional and strip tillage systems. Preplant fertilizer did not affect response to tillage. Response did not differ among conventional tillage systems consisting of disk, disk and chisel, or disk and moldboard plow or among reduced tillage systems. Pod yield of peanut grown in the most effective conventional tillage system exceeded yield when peanut was strip‐tilled into stubble of the previous crop, strip‐tilled into a wheat (Triticum aestivum L.) cover crop, or strip‐tilled into beds prepared the previous fall without a cover crop. Tillage system and CaSO4 rate affected pod yield and gross value independently. Gross value increased when CaSO4 was applied regardless of tillage system. These data suggest that preplant fertilizer at relatively low, remedial rates does not affect peanut response to tillage systems. These data also suggest that tillage system does not have a major impact on peanut response to CaSO4. Collectively, these data indicate that the highest peanut yields occur in conventional tillage systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call