Abstract

To achieve the non-destructive detection of peanut defects, a multi-target identification method based on the multispectral system and improved Faster RCNN is proposed in this paper. In terms of the system, the root-mean-square contrast method was employed to select the characteristic wavelengths for defects, such as mildew spots, mechanical damage, and the germ of peanuts. Then, a multispectral light source system based on a symmetric integrating sphere was designed with 2% nonuniformity illumination. In terms of Faster RCNN improvement, a texture-based attention and a feature enhancement module were designed to enhance the performance of its backbone. In the experiments, a peanut-deficient multispectral dataset with 1300 sets was collected to verify the detection performance. The results show that the evaluation metrics of all improved compared with the original network, especially in the VGG16 backbone network, where the mean average precision (mAP) reached 99.97%. In addition, the ablation experiments also verify the effectiveness of the proposed texture module and texture enhancement module in peanut defects detection. In conclusion, texture imaging enhancement and efficient extraction are effective methods to improve the network performance for multi-target peanut defect detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.