Abstract
In this paper, the peakons and bifurcations in a generalized Camassa-Holm equation are studied by using the bifurcation method and qualitative theory of dynamical systems. First, the averaged equation is obtained by introducing linear transform and traveling wave transform to the generalized Camassa-Holm equation. Then, we applied the bifurcation theory of planar dynamical system and maple software to investigate the averaged equation. The phase portrait of the system under a parameter condition is obtained. Finally, we get the peakons from the limit of general single solitary wave solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.