Abstract

In this paper, we study peakon, cuspon, and pseudo-peakon solutions for two generalized Camassa-Holm equations. Based on the method of dynamical systems, the two generalized Camassa-Holm equations are shown to have the parametric representations of the solitary wave solutions such as peakon, cuspon, pseudo-peakons, and periodic cusp solutions. In particular, the pseudo-peakon solution is for the first time proposed in our paper. Moreover, when a traveling system has a singular straight line and a heteroclinic loop, under some parameter conditions, there must be peaked solitary wave solutions appearing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.