Abstract

Water demands vary and consideration of the probabilistic nature of the variations should lead to more instructive assessments of the performance of water distribution systems. Water consumption data for several households were analysed using the chi-square technique and it was found that distributions worth considering under certain circumstances include the normal and lognormal. Reliability values were calculated for a range of critical demand values and the corresponding confidence levels determined from the probability distributions. Water consumption was assumed to be pressure dependent and the modelling of the water distribution system was carried out accordingly. This peaking factor approach coupled with the statistical modelling of demands provides a more realistic way of incorporating variations in demands in the evaluation and reporting of system performance than the traditional single demand value approach in that the extent to which a network can satisfy any demand and the probability that the demand will occur can be recognized explicitly. The method is illustrated by an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.