Abstract

We present a range of coding schemes for OFDM transmission using binary, quaternary, octary, and higher order modulation that give high code rates for moderate numbers of carriers. These schemes have tightly bounded peak-to-mean envelope power ratio (PMEPR) and simultaneously have good error correction capability. The key theoretical result is a previously unrecognized connection between Golay complementary sequences and second-order Reed-Muller codes over alphabets Z/sub 2/h. We obtain additional flexibility in trading off code rate, PMEPR, and error correction capability by partitioning the second-order Reed-Muller code into cosets such that codewords with large values of PMEPR are isolated. For all the proposed schemes we show that encoding is straightforward and give an efficient decoding algorithm involving multiple fast Hadamard transforms. Since the coding schemes are all based on the same formal generator matrix we can deal adaptively with varying channel constraints and evolving system requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.