Abstract

In a smart grid network, demand-side management plays a significant role in allowing consumers, incentivized by utilities, to manage their energy consumption. This can be done through shifting consumption to off-peak hours and thus reducing the peak-to-average ratio (PAR) of the electricity system. In this paper, we begin by proposing a demand-side energy consumption scheduling scheme for household appliances that considers a PAR constraint. An initial optimization problem is formulated to minimize the energy cost of the consumers through the determination of the optimal usage power and operation time of throttleable and shiftable appliances, respectively. We realize that the acceptance of consumers of these load management schemes is crucial to its success. Hence, we then introduce a multi-objective optimization problem which not only minimizes the energy cost but also minimizes the inconvenience posed to consumers. In addition to solving the proposed optimization problems in a centralized manner, two distributed algorithms for the initial and the multi-objective optimization problems are also proposed. Simulation results show that the proposed demand-side energy consumption schedule can provide an effective approach to reducing total energy costs while simultaneously considering PAR constraints and consumers' preferences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.