Abstract

In this paper, the probability distribution of the peak to average power ratio (PAPR) is analyzed for the mixed numerologies transmission based on orthogonal frequency division multiplexing (OFDM). State of the art theoretical analysis implicitly assumes continuous and symmetric frequency spectrum of OFDM signals. Thus, it is difficult to be applied to the mixed-numerology system due to its complication. By comprehensively considering system parameters, including numerology, bandwidth and power level of each subband, we propose a generic analytical distribution function of PAPR for continuous-time signals based on level-crossing theory. The proposed approach can be applied to both conventional single numerology and mixed-numerology systems. In addition, it also ensures the validity for the noncontinuous-OFDM (NC-OFDM). Given the derived distribution expression, we further investigate the effect of power allocation between different numerologies on PAPR. Simulations are presented and show the good match of the proposed theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.