Abstract

Ultrahigh-molecular-weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax - Kmin , MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax ), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax , during cyclic loading. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform, and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasistatic manner. This study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax . The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.