Abstract

This study investigated variations in the composition and biomass of demersal fish assemblages over a 570-metre depth gradient on the temperate, lower west coast of Australia (32° S) in the south-eastern Indian Ocean. Fish assemblages were sampled using Baited Remote Underwater Stereo Video systems (stereo-BRUVs, n = 284 deployments) from shallow waters around a mid-shelf island (Rottnest Island) to the continental slope within a submarine canyon (Perth Canyon). A total of 9013 individual fishes (i.e. ΣMaxN) belonging to 179 species and 75 families were identified. Multivariate statistical analyses revealed three distinct fish assemblages associated with the continental shelf (5–199 m), margin (200–300 m) and upper slope (300–570 m). A distance-based linear model revealed that among environmental covariates, benthic biota (sessile invertebrates and macroalgae) accounted for the highest proportion of variation in fish assemblage composition (16.9%) followed by depth (12.5%) and seabed relief (10.5%). Generalised additive models indicated higher biomass of fish associated with habitats characterised by benthic biota. Species richness decreased with increasing depth across the continental shelf but remained constant with increasing depth on the continental slope. Average fish length was not correlated with depth but was greatest at 200–400 m depth. The continental margin and upper slope habitats revealed a distinct change in assemblage composition as well as a peak in biomass of species that was dominated by larger-bodied meso-predators at the continental margin. The trends exhibited in fish assemblage characteristics across this broad depth range can inform ecosystem based management for deepwater fisheries resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call