Abstract

In this paper, we present a two-phase multimodal optimization model designed to efficiently and accurately identify multiple optima. The first phase employs a population-based search algorithm to locate potential optima, while the second phase introduces a novel peak identification (PI) procedure to filter out non-optimal solutions, ensuring that each identified solution represents a distinct optimum. This approach not only enhances the effectiveness of multimodal optimization but also addresses the issue of redundant solutions prevalent in existing algorithms. We propose two PI algorithms: HVPI, which uses a hill-valley approach to distinguish between optima, without requiring prior knowledge of niche radii; and HVPIC, which integrates HVPI with bisecting K-means clustering to reduce the number of fitness evaluations (FEs). The performance of these algorithms was evaluated using the F-measure, a comprehensive metric that accounts for both the accuracy and redundancy in the solution set. Extensive experiments on a suite of benchmark functions and engineering problems demonstrated that our proposed algorithms achieved a high precision and recall, significantly outperforming traditional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.