Abstract

Correlative scanning probe microscopy of chemical identity, surface potential, and mechanical properties provide insight into the structure-function relationships of nanomaterials. However, simultaneous measurement with comparable and high resolution is a challenge. We seamlessly integrated nanoscale photothermal infrared imaging with Coulomb force detection to form peak force infrared-Kelvin probe force microscopy (PFIR-KPFM), which enables simultaneous nanomapping of infrared absorption, surface potential, and mechanical properties with approximately 10 nm spatial resolution in a single-pass scan. MAPbBr3 perovskite crystals of different degradation pathways were studied in situ. Nanoscale charge accumulations were observed in MAPbBr3 near the boundary to PbBr2 . PFIR-KPFM also revealed correlations between residual charges and secondary conformation in amyloid fibrils. PFIR-KPFM is applicable to other heterogeneous materials at the nanoscale for correlative multimodal characterizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.