Abstract

A series of physical tests are conducted to examine the characteristics of the wave loading exerted on circular-front breakwaters by regular waves. It is found that the wave trough instead of wave crest plays a major role in the failure of submerged circular caissons due to seaward sliding. The difference in the behavior of seaward and shoreward horizontal wave forces is explained based on the variations of dynamic pressure with wave parameters. A wave load model is proposed based on a modified first-order solution for the dynamic pressure on submerged circular-front caissons under a wave trough. This wave loading model is very useful for engineering design. Further studies are needed to include model uncertainties in the reliability assessment of the breakwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.