Abstract

Electric power system peak dispatching plays a very important role in leveling the load curve, strengthening grid stability, and conserving energy. The inadequate capability of peak dispatching is a leading factor in incomplete wind power integration and poor load characteristics. Adding energy storage on the demand side can improve system peak dispatching ability, promote wind power, and optimize the load curve. This paper first analyzes the mechanisms of regenerative electric heaters (REHs) and electric vehicles (EV) on peak dispatching, based on which a multi-energy hybrid peak dispatching system is designed. Taking into account economic, environmental, and societal benefits and equivalent load curve fluctuation level, this study establishes a multi-energy hybrid peak dispatching optimization model that considers general as well as REH and EV load-control constraints. In view of the shortcomings of particle swarm optimization (PSO), a two-phase force (TPF) rule is introduced in searching process to improve PSO searching performance. The research result reveals that: TPF rule can optimize PSO searching performance and help obtain the best peak-dispatching scheme. In addition, the multi-energy hybrid peak dispatching system designed here offers advantages in leveling the load curve, optimizing power output, conserving energy and reducing emissions, and yield economic benefits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.