Abstract
MALDI mass spectrometry imaging (MALDI MSI) is a spatially resolved analytical tool for biological tissue analysis by measuring mass-to-charge ratios of ionized molecules. With increasing spatial and mass resolution of MALDI MSI data, appropriate data analysis and interpretation is getting more and more challenging. A reliable separation of important peaks from noise (aka peak detection) is a prerequisite for many subsequent processing steps and should be as accurate as possible. We propose a novel peak detection algorithm based on sparse frame multipliers, which can be applied to raw MALDI MSI data without prior preprocessing. The accuracy is evaluated on a simulated data set in comparison with state-of-the-art algorithms. These results also show the proposed method's robustness to baseline and noise effects. In addition, the method is evaluated on real MALDI-TOF data sets, whereby spatial information can be included in the peak picking process. SignificanceThe field of proteomics, in particular MALDI Imaging, encompasses huge amounts of data. The processing and preprocessing of this data in order to segment or classify spatial structures of certain peptides or isotope patterns can hence be cumbersome and includes several independent processing steps. In this work, we propose a simple peak-picking algorithm to quickly analyze large raw MALDI Imaging data sets, which has a better sensitivity than current state-of-the-art algorithms. Further, it is possible to get an overall overview of the entire data set showing the most significant and spatially localized peptide structures and, hence, contributes all data driven evaluation of MALDI Imaging data.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.