Abstract

Olfactory perception of pheromones in insects involves odorant-binding proteins (OBPs), relatively small proteins (ca.110-240 amino acid residues) that can bind reversibly to behaviourally active olfactory ligands. In this study, we investigated the binding in silico and in vitro of the aphid sex pheromone components (1R,4aS,7S,7aR)-nepetalactol and (4aS,7S,7aR)-nepetalactone and the aphid alarm pheromone (E)-β-farnesene by OBPs from the pea aphid, Acyrthosiphon pisum. Screening of protein models of ApisOBPs1-11 with the aphid sex pheromone components suggested that ApisOPB6 was a candidate. Fluorescence assays using ApisOBP6 suggested that ApisOBP6 was able to bind both sex pheromone components and discriminate from the aphid alarm pheromone and the generic plant compound (R/S)-linalool. Saturation transfer difference NMR experiments with ApisOBP6 yielded results consistent to those from the fluorescence experiments, with a clear interaction between ApisOBP6 and (4aS,7S,7aR)-nepetalactone. These results describe a novel interaction and potential function for ApisOBP6, point to pre-receptor odorant discrimination by OBPs, and provide a platform for investigating the function of other aphid olfactory proteins involved in aphid chemical ecology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.