Abstract
기존의 주성분 분석을 이용한 물체 인식 기술은 모델 영상내의 각각의 물체의 대표 값을 만든 후에 실험 영상을 물체 공간에 투영 시켜서 나온 성분과 대표 값의 거리를 비교하여 인식하게 된다. 그러나 단순히 기존의 방법인 point to point 방식인 단순 거리 계산은 오차가 많기 때문에 본 논문에서는 개선된 Class to Class 방식인 k-Nearest Neighbor을 이용하여 몇 개의 연속적인 입력영상에 대해 각 각의 모델영상들을 인식의 단위로 이용하였다. 또한, 물체 인식을 하는데 있어 본 논문에서 제안한 주성분 분석법은 물체 영상 자체를 계산하여 인식하는 게 아니라 물체 영상 공간이라는 고유 공간을 구성한 후에 단지 기여도가 큰 5개의 벡터로만 인식을 수행하기 때문에 자원 축소의 효과까지 얻을 수 있었다. Object recognition technologies using PCA(principal component analysis) recognize objects by deciding representative features of objects in the model image, extracting feature vectors from objects in a image and measuring the distance between them and object representation. Given frequent recognition problems associated with the use of point-to-point distance approach, this study adopted the k-nearest neighbor technique(class-to-class) in which a group of object models of the same class is used as recognition unit for the images in-putted on a continual input image. However, the robustness of recognition strategies using PCA depends on several factors, including illumination. When scene constancy is not secured due to varying illumination conditions, the learning performance the feature detector can be compromised, undermining the recognition quality. This paper proposes a new PCA recognition in which database of objects can be detected under different illuminations between input images and the model images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.