Abstract

Low temperature metal-induced-crystallized germanium is a promising alternative for silicon in Complementary Metal-Oxide-Semiconductor (CMOS) technology. Palladium (Pd) is one of the metals suitable for inducing the low temperature crystallization. It is not certain, how residual Pd atoms are integrated into the Ge lattice. Therefore, time-different γ-γ perturbed angular correlation (TDPAC) technique using the 100Pd(→100Rh) nuclear probe has been applied to study the hyperfine interactions of this probe in single crystalline undoped Ge. A Pd-vacancy (Pd-V) complex with a unique interaction frequency of 8.4(2) Mrad/s has been identified. The Pd-V complex has been measured to have a maximum fraction after annealing at 350 °C. Density functional theory calculations have confirmed that the Pd-V complex may have the split-vacancy configuration in Ge, in contrast to the full-vacancy configuration observed in Si.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.