Abstract

To realize the high-performance load torque tracking of an electric dynamic load simulator system with random measurement noises and strong position disturbances, a PD-type iterative learning control (ILC) algorithm with adaptive learning gains is proposed in this paper. With the principle of system analyzing, a nonlinear discrete state-space model is established. The adaptive learning gains is used to suppress the effects of periodic disturbances and random measurement noises on the load torque tracking performance. A traditional PD feedback controller in parallel with the proposed ILC is designed to stabilize the system and render the ILC converge quickly. The convergence analysis of the proposed control method ensures the stability of the system. Compared with the fixed learning gains, the experiment results show that the proposed control method has better load torque tracking performance and can effectively suppress the adverse effects of periodic and aperiodic disturbances on tracking accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.