Abstract
Abstract New approaches to the treatment of diffuse intrinsic pontine gliomas (DIPGs) are desperately needed. DNA damage response is essential for cells to maintain genome integrity as DNA is damaged by both endogenous and exogenous stressors. Many cancer cells exhibit hyper-dependency on specific DNA repair pathways due to either defects in DNA repair mechanisms and/or high levels of endogenous stress leading to accumulation of DNA damage lesions. Identification of DIPG-specific DNA repair deficiencies and resultant dependencies may establish novel therapeutic strategies for DIPGs. METHODS To identify pathways critical for DIPG cell survival, genome wide CRISPR-Cas9 screen was performed on patient derived DIPG cell lines followed by gene set enrichment analyses. To monitor the effects of pathway inhibition on survival, apoptosis, DNA damage and repair, assays were performed to measure cell proliferation, cleaved-caspase3, gamma-H2AX and reporter based-DNA repair efficiency. RESULTS Our unbiased CRISPR approach to uncover vulnerabilities in DIPGs identified DNA double strand break (DSBs) repair pathways as essential for DIPG cell proliferation and survival. Further studies revealed high basal DSBs in DIPG cells compared to neural stem cells and primary astrocytes that suggest dependence of DIPG cell survival on specific DSB repair pathways. We confirmed the intrinsic reliance of DIPG cells on the specific DSB repair pathway of mutagenic end-joining, and defined a key role for DNA repair in suppressing endogenous DNA damage-induced apoptotic cell death. CONCLUSION DIPG cells have high endogenous DNA damage levels and escape catastrophic genomic instability and cell death by engaging DNA repair pathways, in particular the mutagenic end-joining DNA repair pathway. Inhibition of this specific DNA repair pathway represents a promising new avenue for the treatment of DIPGs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.