Abstract

In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization (PDSO). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed PDSO and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.