Abstract
The PdPtVOx/CeO2−ZrO2 (PdPtVOx/CZO) catalysts were obtained by using different approaches, and their physical and chemical properties were determined by various techniques. Catalytic activities of these materials in the presence of H2O or SO2 were evaluated for the oxidation of ethylbenzene (EB). The PdPtVOx/CZO sample exhibited high catalytic activity, good hydrothermal stability, and reversible sulfur dioxide-poisoning performance, over which the specific reaction rate at 160°C, turnover frequency at 160°C (TOFPd or Pt), and apparent activation energy were 72.6 mmol/(gPt⋅sec) or 124.2 mmol/(gPd⋅sec), 14.2 sec−1 (TOFPt) or 13.1 sec−1 (TOFPd), and 58 kJ/mol, respectively. The large EB adsorption capacity, good reducibility, and strong acidity contributed to the good catalytic performance of PdPtVOx/CZO. Catalytic activity of PdPtVOx/CZO decreased when 50 ppm SO2 or (1.0 vol.% H2O + 50 ppm SO2) was added to the feedstock, but was gradually restored to its initial level after the SO2 was cut off. The good reversible sulfur dioxide-resistant performance of PdPtVOx/CZO was associated with the facts: (i) the introduction of SO2 leads to an increase in surface acidity; (ii) V can adsorb and activate SO2, thus accelerating formation of the SOx2− (x = 3 or 4) species at the V and CZO sites, weakening the adsorption of sulfur species at the PdPt active sites, and hence protecting the PdPt active sites to be not poisoned by SO2. EB oxidation over PdPtVOx/CZO might take place via the route of EB → styrene → phenyl methyl ketone → benzaldehyde → benzoic acid → maleic anhydride → CO2 and H2O.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.