Abstract

PdPt nanosheets decorated on SnS2 nanosheets (i.e., PdPt@SnS2 NSs) were fabricated for a novel electrochemiluminescence (ECL) biosensor for ultrasensitive detection of miRNA-21 based on catalytic hairpin assembly (CHA) cycles. The PdPt@SnS2 NSs serve as both the main luminophore and a highly effective coreaction accelerator in the ECL biosensor. In the CHA cycles, more miRNA-21 is captured, and the performance of the ECL biosensor is improved. When miRNA-21 is present, the hairpin chain DNA1 (i.e., H1) is opened, and the ferrocene (Fc)-modified hairpin chain DNA2 (i.e., Fc-H2) hybridizes with as-opened H1 by replacing miRNA-21 to stimulate CHA cycles of miRNA-21. During the CHA cycles, Fc-H2 quenches the ECL signal to monitor miRNA-21. As a result, the ECL biosensor shows ultrasensitive and highly selective detection of miRNA-21 from 1 aM to 1 nM with a detection limit (LOD) of 0.02 aM. In addition, the ECL biosensor exhibits excellent practicality for miRNA-21 detection in human serum samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call